国产日产欧美精品-亚洲国产综合久久精品-色综合色国产热无码一-亚洲欧美日本国产,免费观看一区二区三区_在线观看片A免费不卡观看_亚洲а∨天堂久久精品_99久无码中文字幕一本久道

產(chǎn)品展廳收藏該商鋪

您好 登錄 注冊

當(dāng)前位置:
美國布魯克海文儀器公司>資料下載>測量應(yīng)用案例-20190607

資料下載

測量應(yīng)用案例-20190607

閱讀:143          發(fā)布時間:2019-6-10
提 供 商 美國布魯克海文儀器公司 資料大小 1.3MB
資料圖片 下載次數(shù) 39次
資料類型 PDF 文件 瀏覽次數(shù) 143次
免費下載 點擊下載    
 文獻名: Experimental and Mechanistic Study of Stabilized Dry CO2 Foam Using Polyelectrolyte Complex Nanoparticles Compatible with Produced Water To Improve Hydraulic Fracturing Performance

 

作者: 1Hooman Hosseini, 2Jyun Syung Tsau, 2Karen Shafer-Peltier, 3,4Craig Marshall, 5Qiang Ye, 1Reza Barati Ghahfarokhi

1Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA

2Tertiary Oil Recovery Program, University of Kansas, Lawrence, Kansas 66045, USA

3Department of Geology, University of Kansas, Lawrence, Kansas 66045, USA

4Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA

5Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas 66045, USA

 

摘要:The amount of fresh water used in hydraulic fracturing can be significantly reduced by employing produced water-compatible supercritical CO2 (scCO2) foams. Foams generated using surfactants only have suffered from long-term stability issues resulting in low viscosity and proppant-carrying problems. In this work, foam lamella stabilization with polyelectrolyte complex nanoparticles (PECNPs) and wormlike micelles (WLMs) is investigated. Electrostatic interactions are studied as the defining factors improving the hydraulic fracturing performance using the PECNP system prepared in produced water. Two oppositely charged polyelectrolytes are investigated to generate a more stable lamellae between the aqueous phase and the scCO2 while degrading in the presence of crude oil. The generated dry foam system is used as a hydraulic fracturing fluid in a tight shale formation. The strong compatibility of the synthesized PECNPs with zwitterionic surfactants prepared in highly concentrated brine in the form of wormlike micelles above critical micelle concentration (CMC) helps develop a highly viscous, dry foam capable of using produced water as its external phase. This foam system improves fracture propagation and proppant transport fracture cleanup compared to the base case foam system with no PECNPs. The formation of PEC–surfactant nanoparticles was verified via zeta potential, particle size analysis, and transmission electron microscopy; the underlying mechanism was identified as electrostatic rearrangement of WLMs along the PECNP’s perimeter or formation of electrostatically bonded micelles with the nanoparticle to create a new enhanced nanoparticle. A Raman spectroscopic model was developed to understand the PECNP–surfactant spectra and subsequent spectroscopic and hence structural changes associated with complexation. Enhanced bulk viscosity and improved foam quality as a result of complexation at the interface was identified with rheometry in addition to sand pack experiments with PECNP–surfactant ratios of 1:9 and 4:6 in 33.3 kppm and 66.7 kppm salinity brine systems, respectively. Enhancement in the shear thinning and cleanup efficiency of the fracturing fluid was observed. Formation damage was controlled by the newly introduced mixtures as fluid loss volume decreased across the tight Kentucky sandstone cores by up to 78% and 35% for scCO2 foams made with PECNP–WLMs in 33.3 and 66.7 kppm salinity brine, respectively. The produced water compatibility and reduction of water disposal presented the prospect of environmentally friendly scCO2 foams for hydraulic fracturing of unconventional reservoirs.

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時間回復(fù)您~

對比框

產(chǎn)品對比 產(chǎn)品對比 聯(lián)系電話 二維碼 在線交流

掃一掃訪問手機商鋪
010-62081908
在線留言
连江县| 台东市| 长治市| 温泉县| 永善县| 思茅市| 塔城市| 淅川县| 新和县| 宣汉县| 体育| 白朗县| 余姚市| 靖江市| 卓资县| 健康| 亚东县| 专栏| 西和县| 抚顺市| 呈贡县| 康乐县| 囊谦县| 祁阳县| 哈尔滨市| 长治市| 蒙山县| 远安县| 迁安市| 马公市| 根河市| 奉新县| 巴楚县| 和林格尔县| 龙泉市| 青龙| 承德市| 淮安市| 保康县| 高邮市| 灵石县|