当前位置:世联博研(北京)科技有限公司>>细胞培养>> Electrophysiology Module细胞电刺激生物力学实验系统
细胞电刺激生物力学实验系统
细胞电刺激生物力学实验系统
创伤性脑损伤体外模型
创伤性脑损伤(TBI)是由大脑的快速变形引起的,导致一连串的病理事件,蕞终导致神经变性。
了解大脑变形的生物力学如何导致组织损伤仍然是一个相当大的挑战。我们开发了一个TBI创伤性脑损伤体外模型,利用可拉伸微电极阵列SMEA膜上的海马切片培养物,以及创伤性脑损伤体外模拟系统装置,通过拉伸硅基质产生组织变形。我们的损伤装置通过反馈控制拉伸的生物力学参数,从而产生可重复的、等轴的变形刺激。1器1官型培养物在变形过程中仍然很好地粘附在膜上,因此在X轴和Y轴上,组织应变分别为膜应变的93%和86%。损伤后的细胞损伤与应变呈正相关。
总之,我们开发了一个独1特的创伤性脑损伤体外模型来研究复杂的细胞环境中机械刺激的影响,模仿体内环境。
我们相信这个模型可以成为研究TBI急性期的有力工具,细胞电生理,诱导的细胞变性可以为开发潜在的治1疗方法提供一个良好的平台,并可能成为TBI动物模型的一个有用的体外替代品。
可拉伸微电极阵列
可拉伸微电极阵列(SMEA)是一种用于记录和电刺激急性脑切片中神经活动的密集微1针阵列,是高密度微1针阵列的设计、微细加工、电气特性和生物评估??衫煳⒌缂罅锌赏奔锹己偷绱碳ぜ毙阅宰橹衅械牡ジ錾窬?。
急性切片可以说是蕞接近大脑的体外模型,它有一个受损的表面层。由于电生理记录方法在很大程度上依赖于电极-细胞的接近性,这一层明显地削弱了信号的振幅,使得传统的平面电极不适合使用。为了绕过组织表面渗透到组织中,细胞电生理机械力刺激联用系统,并记录和刺激切片内部健康体积的神经活动,我们研究开发了可拉伸微电极阵列。
可拉伸微电极阵列被证明可以记录急性皮层切片中单个神经元的细胞外动作电位,信噪比高达0000000。对单个神经元的电刺激是以0000000的刺激阈值实现的。
该可拉伸微电极阵的创新之处在于结合了紧密的针距(60微米)、高达250微米的针高和?。?-10微米直径)的电极,允许记录单体活动。该阵列与特定系统相结合,形成一个强大的电生理工具,允许与急性脑片中的神经元群体进行双向的电极-细胞交流。
体外神经电活动监测系统
在具有机械活性的生物组织中连接电子器件和记录电生理活动是一项非常困难的挑战。
这种挑战延伸到记录脑组织在创伤性脑损伤(TBI)情况下的神经功能,创伤性脑损伤是由快速(数百毫秒内)和大(大于5%的应变)的大脑变形引起的。连接电极必须在多个层面上具有生物相容性,并应与组织一起变形以防止额外的机械损伤。
我们的体外神经电活动监测系统拥有一种弹性可拉伸的微电极阵列(SMEA),它能够经受大的、双轴的、二维的拉伸而保持功能。
新的SMEA由硅膜上的可弹性拉伸的薄金属膜组成。它可以在大的双轴变形之前、期间和之后刺激和检测来自培养的脑组织(海马片)的电活动。
我们已经将SMEA纳入了一个特性良好的体外TBI研究平台——体外神经电活动监测系统,该平台通过拉伸SMEA和粘附的脑片培养,再现了TBI的生物力学特性。
机械损伤参数,细胞电生理特性机械刺激加载系统,如应变和应变率,可以被精1确控制以产生特定水平的损伤。
SMEA允许在损伤前后对神经元功能进行量化,而不需要打破培养的无菌性或为损伤事件重新定位电极,因此可以进行连续和长期的测量。
我们报告了SMEA的测试以及研究机械刺激对神经元功能影响的初步应用,它可以作为一个高含量的、用于TBI的药1物筛查平台。
请输入账号
请输入密码
请输验证码
以上信息由企业自行提供,信息内容的真实性、准确性和合法性由相关企业负责,化工仪器网对此不承担任何保证责任。
温馨提示:为规避购买风险,建议您在购买产品前务必确认供应商资质及产品质量。