供货周期 | 现货 | 规格 | 12V系列 |
---|---|---|---|
货号 | 1324542185 | 应用领域 | 医疗卫生,能源,电子/电池,道路/轨道/船舶,电气 |
主要用途 | 控制系统,电动玩具,应急灯,电动工具,报警系统,应急照明系统,备用电力电源,UP |
ROCKET蓄电池SMF40B19L参数介绍
![]() |
参考价 | 面议 |
更新时间:2020-07-09 15:00:51浏览次数:233
联系我们时请说明是化工仪器网上看到的信息,谢谢!
ROCKET蓄电池SMF40B19L参数介绍
ROCKET蓄电池SMF40B19L参数介绍
我司代理蓄电池产品,如需详细了解更多蓄电池技术参数及规格,请通过以上的联系我;我们公司还设有经验丰富的工程师团队;对一些疑难解答和方案设计都有着多年的经验。我们将热诚为你服务?。?!
??????? ?????? ??? ??? 6?? cell ? 1?? cell ??? ????? ?????? ?? ???
??? ??? ??? ??? ????? ? ?? ????.
?? ??? ???? ?????? ???? ?? cell?? ??? ?? ?? ?????? ???? ????
??? ??? ???? ??? ????.
ECO模式转正常供电模式波形图
使用ECO模式必须具备以下条件:
(1)静态旁路必须采用两组高可靠晶闸管,不得采用接触器加晶闸管的组合,因为接触器吸合时,接触点会打火,一般工作数百次之后就不能正常工作了。而晶闸管则不存在此问题,同时可以缩短切换时间。
(2)建议使用在较好的电力环境下,比如一级供电单位等。
3、降低输入电流谐波,提高功率因数
谐波产生的根本原因是由于电力线路呈现一定阻抗,等效为电阻、电感和电容构成的无源网络,由于非线性负载产生的非正弦电流,造成电路中电流和电压畸变,称为谐波。谐波的危害包括:引起电气组件附加损耗和发热(如电容、变压器、电机等);电气组件温升高、效率低、加速绝缘老化、降低使用寿命;干扰设备正常工作;无功功率增加,电力设备有功容量降低(如变压器、电缆、配电设备);供电效率低;出现谐振,特别是柴油发电机发电时更严重;空开跳闸、熔丝熔断、设备无故损坏。UPS对于电网而言是一个非线性负载,在工作的时候会产生大量的谐波。以配置6脉冲整流器的UPS为例,其输入功率因数一般为0.75左右,谐波大于30%。降低UPS工作谐波的主要方法有:
(1)采用12脉冲整流器。其原理是在原有6脉冲整流器基础上,在输入侧增加一个移相变压器和6脉冲整流器。采用该技术方案后,可以将谐波降低至10%左右。优点是较为简单,谐波改善明显;缺点是对功率因数改善有限,价格略高。
(2)采用无源滤波器。依据LC滤波电路原理,对UPS产生的谐波进行滤除,并对功率因数进行补偿。优点是技术简单,成本较低;缺点是只能补偿特点阶次的谐波,同时受负载阻抗影响较大,无法适用于全功率段。
(3)采用有源滤波器。原理是利用可控的功率半导体器件向电网注入与谐波源电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。优点是可以补偿多个阶次的谐波,且不受负载阻抗大小的影响;缺点是购置成本较高。
(4)采用高频IGBT整流及PFC功率因数校正电路设计整流器。原理是采用高频率PWM控制IGBT导通,对输入电压波形进行分割,使输入电流波形尽量接近正弦波,并对输入电压和电流相位差进行补偿。优点是体积轻,价格便宜,效果好;缺点是技术结构复杂,不易维护,受功率器件影响,目前容量大小受到限制。
ESH Specification
Model | Normal | Hourly capacity(AH) | Dimensions(mm) | Weight | |||||||
10HR | 5HR | 3HR | 1HR | 0.5HR | Length | Width | Height | Total | |||
ESH 30-12 | 12 | 30 | 25.5 | 23.1 | 18 | 15 | 192 | 132 | 170 | 170 | 9.3 |
ESH 40-12 | 12 | 40 | 34 | 30.8 | 24 | 20 | 197 | 165 | 170 | 170 | 12.8 |
ESH 65-15 | 12 | 60 | 55.3 | 50.1 | 39 | 32.5 | 325 | 166 | 174 | 174 | 20.9 |
ES80H-12 | 12 | 80 | 68 | 61.5 | 48 | 37.5 | 332 | 174 | 229 | 229 | 24.7 |
ES100H-12 | 12 | 100 | 85 | 77.1 | 60 | 46.5 | 332 | 174 | 229 | 229 | 28.7 |
ESH 100-12 | 12 | 100 | 92 | 83 | 65 | 50 | 443 | 167 | 204 | 237 | 32.0 |
ESH 120-12 | 12 | 120 | 110 | 100 | 78 | 60 | 550 | 167 | 204 | 237 | 40.0 |
ESH 130-12 | 12 | 130 | 119 | 108 | 85 | 65 | 550 | 167 | 204 | 237 | 40.0 |
ESH 150-12 | 12 | 150 | 137 | 124 | 98 | 75 | 520 | 269 | 203 | 237 | 50.0 |
电池管理及配电管理技术
UPS都配备了电池组,用户在电池组上的投资往往占整个UPS供电系统投资的很大一部分,甚至超过UPS本身的投资,而电池的使用年限明显低于UPS设备。由于电池主要材料是重金属铅、硫酸和不易分解的塑料,都会对环境造成严重的污染。因此减少电池使用数量,延长电池循环使用寿命,不仅节省直接和间接的电池投资,而且还减少整个对环境的污染。所以UPS可以通过以下几个技术实现电池的节能。
(1)并机共用电池组功能。共用电池组原理是通过特殊的整流器控制及故障隔离技术,使并机系统中的两台或多台UPS的整流同步、母线均流,使系统中的各台UPS母线直接并联,然后将满足系统后备时间要求的电池并联后接入并联母线系统中,实现电池的共享,减少电池投资。以“1+1”为例,传统的UPS方案,系统后备一小时,考虑其中一台UPS故障时,UPS2的电池不能为UPS1使用,所以UPS1和UPS2必须各配置一套一小时的电池组,才能保障系统在断电后还能备用一小时。采用共用电池组方案后,因为UPS1故障后,系统中的电池仍能为UPS2提供能量,所以整个系统仅需配置1套1小时电池即可。不仅节省了电池直接投资,同时也节约机房在空间、承重及空调等方面的投资,也降低了对环境的污染?;蚺渲蒙傩淼绯兀雠浞⒌缁?。
(2)智能电池管理技术。影响电池寿命的因素有很多,主要包括温度、充电、放电、循环次数等。如果能够对上述几个因素进行综合处理,可以大大延长电池的使用寿命,延长电池更换周期,节约电池投资。UPS的智能电池管理技术主要包括:电池均浮充管理(均浮充控制)、充电温度补偿、智能放电终止电压控制,除此之外还应具备电池定期自动检测和电池漏液检测功能。另外还可以选择输入电压范围较宽的UPS,减少电池放电次数。通过上述几种技术,可大幅度延长电池寿命2~3年。
(3)智能UPS配电管理技术。原理是通过侦测UPS电池电压或者管理设备供电时间,实现对机房中不同等级负载的多次下电?;すδ?,减少电池投资、提高电池使用率。智能UPS配电管理技术主要有两种方案:包括软件实现方式及硬件实现方式。
蓄电池应用领域与分类:
◆ 免维护无须补液; ● UPS不间断电源;
◆ 内阻小,大电流放电性能好; ● 消防备用电源;
◆ 适应温度广; ● 安全防护报警系统;
◆ 自放电??; ● 应急照明系统;
◆ 使用寿命长; ● 电力,邮电通信系统;
◆ 荷电出厂,使用方便; ● 电子仪器仪表;
◆ 安全防爆; ● 电动工具,电动玩具;
◆ *配方,深放电恢复性能好; ● 便携式电子设备;
◆ 无游离电解液,侧倒仍能使用; ● 摄影器材;
◆ 产品通过CE,ROHS认证,所有电池 ● 太阳能、风能发电系统;
符合国家标准。 ● *自行车、红绿警示灯等。
阀控铅酸(VRLA)蓄电池是中小型不间断电源(UPS)的储能电池。VRLA蓄电池的本质是安全的,热失控情况可以预防。但是,当VRLA被误用或滥用时,会有一定的危险。正如前面所说,热失控的副产品是氢气和氧气(构成水的两个元素)。而且在有些情况下,还会有少量氢气与电解液的混合物,形成硫化氢(H2S)。具体讨论如下:
氢气–人们对于VRLA蓄电池热失控的大恐惧就是氢气和氧气的逸出。当氢气在空气中的浓度达到4%左右,即爆炸下限(LEL)时,氢气会燃烧。当然,此时需要点火(火花),才能燃烧,当浓度仅为4%时,燃烧程度很弱,极难引起注意,但当浓度升高,会发生剧烈爆炸。氢是轻的原子,因此它总是上升,很难抑制,一有机会它就会逸出。出色设计的供电系统和设施能防止氢气累积。电池生产商可提供坏情况下的气体逸出率。标准做法是将机柜或机房中累积的氢气浓度控制在1%以下。相比较而言,自然界中氢气含量为0.01%。VRLA蓄电池中的阀门在设计时,就能够防止火焰进入电池,造成内部爆炸。
硫化氢–人们有时会在发生热失控事件后,抱怨有难闻的“臭鸡蛋”味道或刺鼻的味道。这很有可能是硫化氢(H2S)造成的。铜质电池端子变暗也表示有硫化氢生成。热失控并不一定会生成硫化氢。具体机制还不清楚。自然界中的硫化氢通常是因为蔬菜腐烂或动物粪便而生成的。人类的鼻子能够闻到浓度低至0.005到0.02ppm的硫化氢。伊利诺伊州公共卫生部将其描述为“相当于在整个剧场的空气中有一小管硫化氢一样”。美国国立环境卫生科学研究所称,当硫化氢浓度仅为对人体有害浓度的1/400左右时,就能发现它的存在。美国政府表示,20ppm是每天8小时吸入剂量的上限。OSHA则认为10分钟、50ppm是可接受的上限。虽然有一些证据表明*接触硫化氢会有一定风险,但没有证据显示短期少量接触会有任何问题。接触硫化氢的症状包括眼睛、鼻子和喉咙感到刺激,有时会有头痛。如果浓度*,会引发严重疾病甚或死亡。对于浓度低于250ppm的情况,一旦不再接触硫化氢,身体就能很快恢复,应该不会留下*后遗症。
因为VRLA热失控期间逸出的硫化氢量极小,通常不会有什么风险。在造成危害前,肯定能检测到硫化氢。但是,一旦检测出硫化氢,就应该为房间通风和/或离开该区域。
火灾/可燃性–大多数大型VRLA电池外壳在设计时都是阻燃的,符合UL94V0和28L.O.I.(临界氧指数)可燃性标准的低要求。内置在UPS中的、较小的VRLA一般符合UL94HB。尽管一些富液电池使用会生成危险烟雾的PVC,但VRLA蓄电池几乎从不使用PVC。
酸溢出–“酸溢出”一词不适用于VRLA蓄电池,因为其电解液是不流动的。VRLA蓄电池会因为老化、滥用或生产问题而膨大变形。有时会发生破裂、少量泄露或滴漏,或是极柱侵蚀现象。这些都可通过常规检查或监控而发现,在维护时能轻松修复。如果VRLA蓄电池电解液流出,则意味着应该更换电池或电池组。但更多情况下,不会有电解液流出迹象,因为如上所述,VRLA蓄电池故障的主要原因是电解液干涸。