产品分类品牌分类
-
博牌蓄电池 台洪蓄电池 科电蓄电池 美赛弗蓄电池 龙振源蓄电池 骆驼蓄电池 强势蓄电池 威达蓄电池 金派克蓄电池 上海西恩迪蓄电池 乐珀尔蓄电池 九华蓄电池 圣得力蓄电池 深圳科士达蓄电池 美国信源蓄电池 LMV蓄电池 优保蓄电池 鑫星蓄电池 安耐威蓄电池 品克蓄电池 MSF蓄电池 普瑞顿蓄电池 艾亚特蓄电池 赛特蓄电池 西力达蓄电池 AKS蓄电池 能特蓄电池 EVADA爱维达蓄电池 富诺顿蓄电池 YUCEL蓄电池 APD蓄电池 华龙蓄电池 美时威蓄电池 德际蓄电池 聚能蓄电池 森特蓄电池 昕朗蓄电池 凯普锐蓄电池 SPKET斯恩特蓄电池 利瑞特蓄电池 山肯蓄电池 EXOR蓄电池 ATA蓄电池 骆俊蓄电池 力宝蓄电池 百纳德蓄电池 柏克蓄电池 金悦城蓄电池 德力斯蓄电池 有利蓄电池 申盾蓄电池 叮东蓄电池 威马蓄电池 迈威蓄电池 欧姆斯蓄电池 阳光赛尔蓄电池 锐特蓄电池 德力森蓄电池 拉普特蓄电池 希尔特蓄电池 苏克士蓄电池 艾诺斯华达蓄电池 康迪斯蓄电池 霍克斯蓄电池 欧迪森蓄电池 银杉蓄电池 优特蓄电池 易事特蓄电池 荷贝克蓄电池 艾默科蓄电池 海志蓄电池 路盛蓄电池 非凡蓄电池 伊电蓄电池 奥冠蓄电池 KOZAR蓄电池 万松蓄电池 美力特蓄电池 NCAA蓄电池 澳克赛斯蓄电池 银泰蓄电池 新太蓄电池 雄霸蓄电池 OGB蓄电池 HTB蓄电池 康利达蓄电池 金源星蓄电池 圣普威蓄电池 示威蓄电池 3A蓄电池 万心蓄电池 云腾蓄电池 鸿宝蓄电池 宝加利蓄电池 西力蓄电池 汗血马蓄电池 灯塔蓄电池 泰斯特蓄电池 奔放蓄电池 狮克蓄电池 括普沃蓄电池 鼎好蓄电池 劲博蓄电池 火箭蓄电池 新能蓄电池 豫光蓄电池 宇力达蓄电池 戴斯特蓄电池 威艾特蓄电池 圣能蓄电池 丰日蓄电池 创宁蓄电池 WDS蓄电池 赛能蓄电池 newmax蓄电池 MHB蓄电池 滨松蓄电池 力源蓄电池 蓝肯蓄电池 力普蓄电池 沃威达蓄电池 NPP蓄电池 闽华蓄电池 乐泊尔蓄电池 博尔特蓄电池 奥亚特蓄电池 美洲豹蓄电池 力得蓄电池 安全蓄电池 力博特蓄电池 中达电通蓄电池 BB美美蓄电池 CSB蓄电池 时高蓄电池 商宇蓄电池 OTB欧特保蓄电池 默克蓄电池 德利仕蓄电池 储霸蓄电池 *蓄电池 奥克松蓄电池 欧力特蓄电池 京科蓄电池 太达蓄电池 UB蓄电池 丰江蓄电池 迈格蓄电池 宇泰蓄电池 赛力特蓄电池 德克蓄电池 驱动力蓄电池 昕能蓄电池 奥特多蓄电池 雷迪司蓄电池 圣豹蓄电池 南都蓄电池 三瑞蓄电池 汇众蓄电池 信源蓄电池 环宇蓄电池 艾佩斯蓄电池 一电蓄电池 PMB蓄电池 PNP蓄电池 冠通蓄电池 恩科蓄电池 矩阵蓄电池 OCEAN蓄电池 欧斯顿蓄电池 欧瑞克蓄电池 科华蓄电池 美华蓄电池 优比施蓄电池 长海斯达蓄电池 MAX蓄电池 HE蓄电池 金狮蓄电池 美阳蓄电池 德富力蓄电池 雄狮蓄电池 赛达蓄电池 光盛蓄电池 昊能蓄电池 恒力蓄电池 金武士蓄电池 瑞达蓄电池 山特蓄电池 梅兰日兰蓄电池 风帆蓄电池 OTP蓄电池 科士达蓄电池 西替帝蓄电池 大力神蓄电池 锐牌蓄电池 光宇蓄电池 八马蓄电池 鸿贝蓄电池 派士博蓄电池 友联蓄电池 凤凰蓄电池 东洋蓄电池 KOKO可可蓄电池 复华蓄电池 圣阳蓄电池 理士蓄电池 松下蓄电池 汤浅蓄电池
产品简介
应用范围:UPS/EPS不间断电源,机房通信,直流屏,应急照明系统,电子仪器设备系统,医疗、邮电、通信、铁路、船舶系统,消防备用电源以及太阳能、风能发电系统等。
详细介绍
APNKN蓄电池GFMG-2000 2V2000Ah质保及维护
美国品克蓄电池能源技术有限公司,总部位于美国西海岸的特拉华州,是美国新能源理论的研究机构,主要致力于工业能源领域电源新技术的研发和应用,在能源动力电池、风光互补发电存储系统、工业电池等方面有着美国乃至国内外*的技术理念。
特殊的铅合金配方,增强了板栅的耐腐蚀性,延长了电池使用寿命。
隔板增强了电池内部性能。
热容量大,减少了热失控的风险,不易干涸,可在较恶劣的环境中使用。
气体复合效率高。
失水极少无电解液层化现象。
贮存期较长。
良好的深放电恢复性能。
采用气相二氧化硅颗粒度小,比表面积大。
自放电率极低,适应温度范围广。
采用阀控式安全阀,使用安全、可靠。
应用领域:广泛使用在通信系统、电力系统、应急灯照明系统、自动化控制系统、消防和安全警报系统、太阳能、风能系统、计算机备用电源、便携式仪器、仪表、医疗系统设备、电动车、电动工具等。
混合动力降低CO2排放的技术提升潜力主要依赖于能量回收系统,因此本文的研究重点主要在改善回收能量的效率上。此处所考虑的边界条件是由车辆大小、质量、行驶阻力和行驶循环法规所决定的。系统分析(基于模拟工具AVL Cruise)表明,用于前桥横置驱动结构的P2混合动力方案能提供能量回收潜力。
约20 kW的峰值功率是发电机处于运行时能量利用与系统功率之间的良好折中。鉴于结构空间需求、系统成本和??榛伤醴判?,侧置(偏置)系统提供了良好的潜力。由于偏置结构附加的传动比,能使用集成了变频器且转速高达18 000 r/min的高转速电机。电机的这种方案能被设计成一个???,因为其同样能作为电驱动桥或作为小型电动车(例如A0级三轮摩托车)的主驱动装置。
在开发中,现有的解决方案在驱动运行时可提供约25 kW或20 kW的发电机功率。功率的差别是以系统电压为基础的。由于蓄电池内部存在阻抗,从蓄电池中获取20 kW功率会引起电压降,而将电流通至蓄电池则会相应提高电压,从而获得更高的额定功率。
为了能在2025年或2030年达到规定的降低CO2排放的目标,从而需不断优化车辆的摩擦损失、变速箱的换挡策略以及内燃机本身的热管理方案,但即便如此,降低全混合动力车型的CO2排放效果仍然有待提升。
从逻辑角度出发,需增加电动车所占的*,借助于以VW Golf Ⅶ轿车为基础的演示车辆进行系统模拟就能体验到该目标效果。为此,将AVL公司开发的效率优化的内燃机与20 kW电动后桥以及AVL公司开发的容量为5.3 kW·h的48 V蓄电池相组合,并在真实交通中进行试验。这种优化的动力总成系统能在车速为50 km/h情况下以电动状态行驶20 km以上的里程。
为降低废气排放(例如CO2)而开展的研究并不*在于用户。自由进入城市的*区域和电动驾驶体验对其充满吸引力。对于用户而言,除了成本价格以外,其主要关注的是行李舱、净载质量、行驶功率等方面的车辆特征。为了满足系统中的相关要求,设计时需分析真实生活中的使用情况,例如需正确地开出车库、横越人行道边沿、通过坡道和更长的距离,同时需考虑的不仅是从-30~60 ℃的温度影响,而且还包括有小型车净载质量480 kg和自重1 250 kg等使用情况。
针对各类重要使用情况的广泛分析即可正确地确定要求,例如对中欧使用情况的系统综合即可得出了所需求的平均电动行驶里程为22 km,这对于市内范围行驶可充分满足要求。
对于C级车和质量为1 500 kg的车辆而言,其大车功率需求约为25~30 kW,而车辆用于驱动的平均持续功率约为5 kW,用于诸如采暖/冷却装置、娱乐信息设备、汽车前大灯、刮雨器装置等辅助设施平均需要增加1~3 kW功率,因此蓄电池的总持续功率需达6~8 kW左右。图3 上图示出了用于WLTC试验循环城市部分和用于真实城市行驶的功率需求比较。