产品分类品牌分类
-
博牌蓄电池 台洪蓄电池 科电蓄电池 美赛弗蓄电池 龙振源蓄电池 骆驼蓄电池 强势蓄电池 威达蓄电池 金派克蓄电池 上海西恩迪蓄电池 乐珀尔蓄电池 九华蓄电池 圣得力蓄电池 深圳科士达蓄电池 美国信源蓄电池 LMV蓄电池 优保蓄电池 鑫星蓄电池 安耐威蓄电池 品克蓄电池 MSF蓄电池 普瑞顿蓄电池 艾亚特蓄电池 赛特蓄电池 西力达蓄电池 AKS蓄电池 能特蓄电池 EVADA爱维达蓄电池 富诺顿蓄电池 YUCEL蓄电池 APD蓄电池 华龙蓄电池 美时威蓄电池 德际蓄电池 聚能蓄电池 森特蓄电池 昕朗蓄电池 凯普锐蓄电池 SPKET斯恩特蓄电池 利瑞特蓄电池 山肯蓄电池 EXOR蓄电池 ATA蓄电池 骆俊蓄电池 力宝蓄电池 百纳德蓄电池 柏克蓄电池 金悦城蓄电池 德力斯蓄电池 有利蓄电池 申盾蓄电池 叮东蓄电池 威马蓄电池 迈威蓄电池 欧姆斯蓄电池 阳光赛尔蓄电池 锐特蓄电池 德力森蓄电池 拉普特蓄电池 希尔特蓄电池 苏克士蓄电池 艾诺斯华达蓄电池 康迪斯蓄电池 霍克斯蓄电池 欧迪森蓄电池 银杉蓄电池 优特蓄电池 易事特蓄电池 荷贝克蓄电池 艾默科蓄电池 海志蓄电池 路盛蓄电池 非凡蓄电池 伊电蓄电池 奥冠蓄电池 KOZAR蓄电池 万松蓄电池 美力特蓄电池 NCAA蓄电池 澳克赛斯蓄电池 银泰蓄电池 新太蓄电池 雄霸蓄电池 OGB蓄电池 HTB蓄电池 康利达蓄电池 金源星蓄电池 圣普威蓄电池 示威蓄电池 3A蓄电池 万心蓄电池 云腾蓄电池 鸿宝蓄电池 宝加利蓄电池 西力蓄电池 汗血马蓄电池 灯塔蓄电池 泰斯特蓄电池 奔放蓄电池 狮克蓄电池 括普沃蓄电池 鼎好蓄电池 劲博蓄电池 火箭蓄电池 新能蓄电池 豫光蓄电池 宇力达蓄电池 戴斯特蓄电池 威艾特蓄电池 圣能蓄电池 丰日蓄电池 创宁蓄电池 WDS蓄电池 赛能蓄电池 newmax蓄电池 MHB蓄电池 滨松蓄电池 力源蓄电池 蓝肯蓄电池 力普蓄电池 沃威达蓄电池 NPP蓄电池 闽华蓄电池 乐泊尔蓄电池 博尔特蓄电池 奥亚特蓄电池 美洲豹蓄电池 力得蓄电池 安全蓄电池 力博特蓄电池 中达电通蓄电池 BB美美蓄电池 CSB蓄电池 时高蓄电池 商宇蓄电池 OTB欧特保蓄电池 默克蓄电池 德利仕蓄电池 储霸蓄电池 *蓄电池 奥克松蓄电池 欧力特蓄电池 京科蓄电池 太达蓄电池 UB蓄电池 丰江蓄电池 迈格蓄电池 宇泰蓄电池 赛力特蓄电池 德克蓄电池 驱动力蓄电池 昕能蓄电池 奥特多蓄电池 雷迪司蓄电池 圣豹蓄电池 南都蓄电池 三瑞蓄电池 汇众蓄电池 信源蓄电池 环宇蓄电池 艾佩斯蓄电池 一电蓄电池 PMB蓄电池 PNP蓄电池 冠通蓄电池 恩科蓄电池 矩阵蓄电池 OCEAN蓄电池 欧斯顿蓄电池 欧瑞克蓄电池 科华蓄电池 美华蓄电池 优比施蓄电池 长海斯达蓄电池 MAX蓄电池 HE蓄电池 金狮蓄电池 美阳蓄电池 德富力蓄电池 雄狮蓄电池 赛达蓄电池 光盛蓄电池 昊能蓄电池 恒力蓄电池 金武士蓄电池 瑞达蓄电池 山特蓄电池 梅兰日兰蓄电池 风帆蓄电池 OTP蓄电池 科士达蓄电池 西替帝蓄电池 大力神蓄电池 锐牌蓄电池 光宇蓄电池 八马蓄电池 鸿贝蓄电池 派士博蓄电池 友联蓄电池 凤凰蓄电池 东洋蓄电池 KOKO可可蓄电池 复华蓄电池 圣阳蓄电池 理士蓄电池 松下蓄电池 汤浅蓄电池
产品简介
光宇蓄电池采用AGM阀控密封技术,产品技术成熟、性能稳定、技术指标均衡、性价比高、安装简便。
目前被广泛作为各领域的后备电池使用,可为用户提供嘉性价比的标准解决方案。
详细介绍
光宇蓄电池6-GFM-17 12V17AH规格及参数
光宇蓄电池6-GFM-17 12V17AH规格及参数
哈尔滨光宇蓄电池有限公司,是光宇集团的核心子公司,是固定型阀控密封铅酸蓄电池的专业生产企业,是中国境内同类产品中规模大,技术、设备的专业生产公司。
光宇蓄电池集十几年的生产经验和科研成果,开发生产出性能特的固定型阀控密封铅酸蓄电池系列产品。产品品种齐全,外型美观,各项性能指标均达到水平,并且具有多技术。公司优选当今世界的铸板机,铅粉机,涂板机和自动装配生产线,建成了具有水平的固定型阀控密封铅酸电池生产基地。
公司先后通过了ISO14001环境管理理体系认证,OHSAS18001职业健康安全管理体系认证,ISO9001质量管理体系认证,美国UL认证、德国TUV认证及英国BS认证及俄罗斯通讯入网证。取得了*电信设备进网许可证,中国移动通信设备选型入网证,中国联通公司蓄电池设备入网许可证,电力部大型电厂及变电所蓄电池设备入网证,铁路通信设备进网许可证、国家广播电视入网证书以及各地区通信市场准入许可证。
光宇蓄电池规格型号及尺寸大?。?/h3>
型号 | 额定电压(V) | 额定容量(Ah) | 尺寸(mm) | 重量(kg) | 端子 | ||||
---|---|---|---|---|---|---|---|---|---|
C10 | C1 | 长 | 宽 | 高 | 总高 | ||||
6-GFM-24 | 12 | 24 | 14 | 165 | 125 | 177 | 180 | 10 | M6 |
6-GFM-38 | 12 | 38 | 22 | 196 | 165 | 176 | 178 | 13.8 | M6 |
6-GFM-50 | 12 | 50 | 28 | 257 | 166 | 170 | 176 | 18.2 | M6 |
6-GFM-65 | 12 | 65 | 37 | 322 | 167 | 170 | 175 | 22.5 | M6 |
6-GFM-80 | 12 | 80 | 45 | 288 | 171 | 216 | 227 | 28.2 | M6 |
6-GFM-100 | 12 | 100 | 56 | 377 | 174 | 217 | 227 | 33 | M8 |
6-GFM-120 | 12 | 120 | 68 | 407 | 174 | 216 | 227 | 39.8 | M8 |
6-GFM-150 | 12 | 150 | 84 | 497 | 203 | 225 | 247 | 53.8 | M8 |
6-GFM-200 | 12 | 200 | 112 | 497 | 259 | 224 | 247 | 70 | M8 |
蓄电池快速充电技术
常规充电的方法采用小电流慢充方式,对新的铅酸蓄电池初充电需70h以上,进行普通充电也需10h以上。充电时间太长,不但会拉长充电监测的时间、造成电能的浪费,还限制了蓄电池的循环利用次数,并增加维护工作量。此外,对于像电动汽车等要求蓄电池连续供电的场合,使用起来很不方便。而采用快速充电方法,可以缩短蓄电池的充电时间,提高充电效率,节约能源,并更好地满足工业应用的需要,具有重大的现实意义。
20世纪60年代中期,美国科学家马斯对蓄电池充电过程中的出气问题作了大量的试验研究工作,提出了以低出气率为前提的蓄电池可接受的充电电流曲线。
在充电过程中,只要充电电流不超过蓄电池可接受的电流,蓄电池内部就不会产生大量的气泡。而常规充电一般采用先恒流、后恒压的两阶段充电法,在充电过程初期,充电电流远远小于蓄电池可接受的充电电流,因而充电时间大大延长;充电过程后期,充电电流又大于蓄电池可接受电流,因而蓄电池内产生大量的气泡。但是,如果在整个充电过程中能使实际充电电流始终等于或接近于蓄电池可接受的充电电流,则充电速度就可大大加快,而且出气率也可控制在很低的范围内。
这就是快速充电的基本理论依据。然而,在充电过程中,蓄电池中产生的极化电压会阻碍其本身的充电,并且使出气率和温升显著升高,因此,极化电压是影响充电速度的重要因素。由此可知,要想实现快速充电,必须设法消除极化电压对蓄电池充电的影响。
从极化电压的形成机理可以推知,极化电压的大小是紧随充电电流的变化而改变的。当停止充电时,电阻极化消失,浓差极化和电化学极化亦逐渐减弱;而如果为蓄电池提供一条放电通道让其反向放电,则浓差极化和电化学极化将迅速消失,同时蓄电池内温度也因放电而降低。因此,在蓄电池充电过程中,适时地暂停充电,并且适当地加入放电脉冲,就可迅速而有效地消除各种极化电压,从而提高充电速度。目前,大家比较认同的快速充电方法是脉冲充电、脉冲放电去极化方法。