详细介绍
C4d 补体成分4d(兔多克隆抗体)
广州健仑生物科技有限公司
补体(complement,C)是存在于正常人和动物血清与组织液中的一组经活化后具有酶活性的蛋白质。早在19世纪末Bordet即证实,新鲜血液中含有一种不耐热的成分,可辅助和补充特异性抗体,介导免疫溶菌、溶血作用,故称为补体。补体是由30余种可溶性蛋白、膜结合性蛋白和补体受体组成的多分子系统,故称为补体系统(complement system)。根据补体系统各成分的生物学功能,可将其分为补体固有成分、补体调控成分和补体受体(CR)。
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
欢迎咨询
欢迎咨询
【产品介绍】
细胞定位:细胞浆/细胞膜
同型:IgG2b
适用组织:石蜡/冰冻
阳性对照:淋巴结/急性肾移植排斥反应/扁桃体
抗原修复:热修复(EDTA)
抗体孵育时间:30-60min
产品编号 | 抗体名称 | 克隆型别 |
OB017 | Beta-Catenin(β-连接素) | 14 |
OB018 | 鼠抗人BOB.1单克隆抗体 | MRQ-35 |
OB019 | BRCA-1(乳腺癌1号基因) | MS110 |
OB020 | C4d(补体4d) | polyclonal |
OB021 | CA IX(碳酸酐酶IX) | MRQ-54 |
OB022 | CA-125(卵巢癌抗原) | OC125 |
OB023 | CA-125(卵巢癌抗原) | M11 |
OB024 | CA15-3糖链抗原 | DF3 |
OB025 | CA19-9(消化道癌相关抗原) | 121SLE |
OB026 | Calcitonin(降钙素) | polyclonal |
OB027 | Caldesmon(钙结合蛋白) | E89 |
C4d 补体成分4d(兔多克隆抗体)
在酵母中进行功能互补实验无疑是一种研究人类基因功能的捷径。如果一个功能未知的人类基因可以补偿酵母中某个具有已知功能的突变基因,则表明两者具有相似的功能。而对于一些功能已知的人类基因,进行功能互补实验也有重要意义。例如与半乳糖血症相关的三个人类基因GALK2(半乳糖激酶)、GALT(UDP-半乳糖转移酶)和GALE(UDP-半乳糖异构酶)能分别补偿酵母中相应的GAL1、GAL7、GAL10基因突变。在进行互补实验以前,人类和酵母的乳糖代谢途径都已十分清楚,对有关几种酶的活性检测法也十分健全,并已获得其纯品,可以进行一系列生化分析。随着人类三个半乳糖血症相关基因的克隆分离成功,功能互补实验成为可能,从而在遗传学水平进一步确证了人类半乳糖血症相关基因与酵母基因的保守性。人们又将这一成果予以推广,利用酵母系统进行半乳糖血症的检测和基因治疗,如区别真正的突变型和遗传多态性,在酵母中模拟多种突变型的组合表型,或筛选基因内或基因间的抑制突变等。这些方法也同样适用于其它遗传病的研究。
利用异源基因与酵母基因的功能,还能使酵母成为其它生物新基因的筛查工具。通过使用特定的酵母基因突变株,对人类cDNA表达文库进行筛选,从而获得互补的克隆。如Tagendreich等利用酵母的细胞分裂突变型(cdcmutant)分离到多个在人类细胞有丝分裂过程中起作用的同源基因。利用此方法,人们还克隆分离到了农作物、家畜和家禽等的多个新基因。
为了充分发挥酵母作为模式生物的作用,除了发展酵母生物信息学和健全异源基因在酵母中进行功能互补的研究方法外,通过建立酵母zui小的基因组也是一个可行的途径。酵母zui小的基因组是指所有明显丰余的基因减少到允许酵母在实验条件下的合成培养基中生长的zui小数目。人类cDNA克隆与酵母中功能已知基因缺陷型进行遗传互补可以确定人类新基因的功能,但是这种互补实验会受到酵母基因组中其它丰余基因的影响。如果构建的酵母zui小基因组中所保留的基因可以被人类或者病毒的DNA序列*替换,那么替换后的表型将*取决于外源基因,这将成为一种筛选抗癌和抗病抗原抗体物的分析系统。
C4d
我司还提供其它进口或国产试剂盒:登革热、疟疾、流感、A链球菌、合胞病毒、腮病毒、乙脑、寨卡、黄热病、基孔肯雅热、克锥虫病、违禁品滥用、肺炎球菌、军团菌、化妆品检测、食品安全检测等试剂盒以及日本生研细菌分型诊断血清、德国SiFin诊断血清、丹麦SSI诊断血清等产品。
想了解更多的产品及服务请扫描下方二维码:
【公司名称】 广州健仑生物科技有限公司
【市场部】 杨永汉
【】
【腾讯 】
【公司地址】 广州清华科技园创新基地番禺石楼镇创启路63号二期2幢101-103室
Functional complementation in yeast is undoubtedly a shortcut to studying the function of human genes. If a human gene with unknown function can compensate for a certain mutant gene with known function in yeast, the two genes have similar functions. However, for some human genes with known functions, it is also of great significance to perform functional complementation experiments. For example, the three human genes GALK2 (galactokinase), GALT (UDP-galactosyltransferase) and GALE (UDP-galactose isomerase) associated with galactosemia are able to compensate for the corresponding GAL1, GAL7, GAL10 gene mutation. Before performing complementary experiments, the lactose metabolic pathways in humans and yeast are well understood and the assay for the activity of several enzymes involved is well established and has acquired its pure product for a series of biochemical analyzes. With the successful cloning and isolation of three galactose related genes in human, functional complementation experiments become possible, which further confirms the conservatism of human galactose related gene and yeast gene at the level of genetics. In turn, this work is being promoted to detect and genetically treat galactosemia using yeast systems, such as distinguishing between true mutants and genetic polymorphisms, in yeast to model multiple mutant combinatorial phenotypes, or by screening Gene or inter-gene suppression mutations. These methods are equally applicable to other genetic diseases.
The use of heterologous genes and yeast genes can also make yeast a screening tool for new genes in other organisms. Human cDNA expression libraries are screened using specific yeast gene mutants to obtain complementary clones. For example, Tagendreich et al. Used yeast cell division mutants (cdcmutants) to isolate a number of homologous genes that play a role in mitosis in human cells. With this approach, many new genes have also been cloned and isolated from crops, livestock and poultry.
In order to give full play to the role of yeast as a model organism, in addition to the development of yeast bioinformatics and the study of functional complementation of heterologous genes in yeast, it is also a viable approach to establish the smallest genome of yeast. The smallest yeast genome refers to the minimum number of genes that are significantly redundant to allow growth of the yeast in synthetic medium under experimental conditions. Genetic complementation of human cDNA clones with genetic defects in yeast that have known genetic defects can determine the function of human new genes, but such complementation experiments can be influenced by other excess genes in the yeast genome. If the gene retained in the constructed minimal genome of yeast can be compley replaced by the human or viral DNA sequence, the replaced phenotype will be compley dependent on the foreign gene, which will serve as a screen for anti-cancer and anti-disease antigens Analysis system.