国产日产欧美精品-亚洲国产综合久久精品-色综合色国产热无码一-亚洲欧美日本国产,免费观看一区二区三区_在线观看片A免费不卡观看_亚洲а∨天堂久久精品_99久无码中文字幕一本久道

瑞士萬通中國有限公司

離子色譜在乙醇?jí)毫ψ饔孟聦?duì)運(yùn)動(dòng)發(fā)酵單胞菌的轉(zhuǎn)錄組進(jìn)行剖析

時(shí)間:2014-5-7 閱讀:3910
分享:

Transcriptome profiling of Zymomonas mobilis under ethanol stress

離子色譜在乙醇?jí)毫ψ饔孟聦?duì)運(yùn)動(dòng)發(fā)酵單胞菌的轉(zhuǎn)錄組進(jìn)行剖析

Abstract

Background: High tolerance to ethanol is a desirable characteristics for ethanologenic strains used in industrial ethanol fermentation. A deeper understanding of the molecular mechanisms underlying ethanologenic strains tolerance of ethanol stress may guide the design of rational strategies to increase process performance in industrial alcoholic production. Many extensive studies have been performed in Saccharomyces cerevisiae and Escherichia coli.

However, the physiological basis and genetic mechanisms involved in ethanol tolerance for Zymomonas mobilis are poorly understood on genomic level. To identify the genes required for tolerance to ethanol, microarray technology was used to investigate the transcriptome profiling of the ethanologenic Z. mobilis in response to ethanol stress.

Results: We successfully identified 127 genes which were differentially expressed in response to ethanol. Ethanol up- or down-regulated genes related to cell wall/membrane biogenesis, metabolism, and transcription. These genes were classified as being involved in a wide range of cellular processes including carbohydrate metabolism, cell wall/ membrane biogenesis, respiratory chain, terpenoid biosynthesis, DNA replication, DNA recombination, DNA repair,

transport, transcriptional regulation, some universal stress response, etc.

Conclusion: In this study, genome-wide transcriptional responses to ethanol were investigated for the first time in Z. mobilis using microarray analysis.Our results revealed that ethanol had effects on multiple aspects of cellular metabolism at the transcriptional level and that membrane might play important roles in response to ethanol. Although the molecular mechanism involved in tolerance and adaptation of ethanologenic strains to ethanol is still

unclear, this research has provided insights into molecular response to ethanol in Z. mobilis. These data will also be helpful to construct more ethanol resistant strains for cellulosic ethanol production in the future.

會(huì)員登錄

×

請(qǐng)輸入賬號(hào)

請(qǐng)輸入密碼

=

請(qǐng)輸驗(yàn)證碼

收藏該商鋪

X
該信息已收藏!
標(biāo)簽:
保存成功

(空格分隔,最多3個(gè),單個(gè)標(biāo)簽最多10個(gè)字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
撥打電話 產(chǎn)品分類
在線留言
上高县| 通辽市| 长宁区| 平安县| 锡林郭勒盟| 泰安市| 石屏县| 赤水市| 霍林郭勒市| 棋牌| 法库县| 连江县| 金昌市| 航空| 安新县| 庐江县| 凤山县| 涟源市| 三河市| 徐州市| 巴林左旗| 大埔区| 乌鲁木齐市| 新绛县| 克拉玛依市| 阜阳市| 缙云县| 高雄市| 鱼台县| 南皮县| 弋阳县| 大方县| 兴安县| 瑞丽市| 津南区| 安平县| 肃南| 久治县| 苍溪县| 竹溪县| 东宁县|